Integrability of Characteristic Hamiltonian Systems on Simple Lie Groups with Standard Poisson Lie Structure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie-poisson Structure on Some Poisson Lie Groups

Poisson Lie groups appeared in the work of Drinfel'd (see, e.g., [Drl, Dr2]) as classical objects corresponding to quantum groups. Going in the other direction, we may say that a Poisson Lie group is a group of symmetries of a phase space that are allowed to "twist," in a certain sense, the symplectic or Poisson structure. The Poisson structure on the group controls this twisting in a precise w...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

On the Riemann-Lie Algebras and Riemann-Poisson Lie Groups

A Riemann-Lie algebra is a Lie algebra G such that its dual G∗ carries a Riemannian metric compatible (in the sense introduced by the author in C. R. Acad. Sci. Paris, t. 333, Série I, (2001) 763–768) with the canonical linear Poisson structure of G∗ . The notion of Riemann-Lie algebra has its origins in the study, by the author, of Riemann-Poisson manifolds (see Differential Geometry and its A...

متن کامل

Poisson structure and invariant manifolds on Lie groups

For a discrete mechanical system on a Lie group G determined by a (reduced) Lagrangian we define a Poisson structure via the pull-back of the Lie-Poisson structure on g∗ by the corresponding Legendre transform. The main result shown in this paper is that this structure coincides with the reduction under the symmetry group G of the canonical discrete Lagrange 2-form ωL on G×G. Its symplectic lea...

متن کامل

Horseshoes and Arnold Diffusion for Hamiltonian Systems on Lie Groups

This paper presents theorems which establish the existence of horseshoes and Arnold diffusion for nearly integrable Hamiltonian systems associated with Lie groups. The methods are based on our two previous papers, Holmes and Marsden [1982a], [1982b). The two main examples treated here are as follows: 1. A simplified model of the rigid body with attachments. This system has horseshoes (with one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2003

ISSN: 0010-3616,1432-0916

DOI: 10.1007/s00220-003-0916-3